Publications

2022

  1. Ionic Conductors
    D. Mori
    "Encyclopedia of High Pressure Science & Technology", Chapter V, Section 2-7, pp. 300-301, Supervision: The Japan Society of High Pressure Science and Technology, Asakura Publishing Co., Ltd. (2022).
  2. Reversible lithium deposition/dissolution reaction with low polarization through a cross-linked polymer: Geometrical structure effects of the polymer protective layer on lithium metal anodes
    K. Takagi, T. Nonoyama, R. Miyagawa, S. Taminato, M. Matsumoto, D. Mori, N. Imanishi
    Solid State Ionics, 386 (15) 116045 (2022).
  3. Electrochemical Evaluation of Lithium Metal Batteries Using Separators with Different Pore Sizes
    R. Miyagawa, J. Takeyoshi, K. Kanamura, S. Taminato, D. Mori, N. Imanishi
    Electrochemistry, 90 (10) 107005 (2022).
  4. Composite Polymer Electrolytes for Lithium Batteries
    S. Taminato, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi
    ChemstrySelect, 7 (29) e202201667 (2022).
  5. Solid-State Lithium-Air Batteries
    D. Mori, T. Zhang, S. Taminato, Y. Takeda, O. Yamamoto, N. Imanishi
    in "Solid State Batteries Volume.2: Materials and Advanced Devices", Vol.2, Chap. 11, pp. 249-265, Ed. R.K. Gupta, ACS Publications (2022).
  6. Water-stable high lithium-ion conducting Li1.4Al0.4Ge0.2Ti1.4(PO4)3-TiO2–LiCl•H2O-epoxy resin composite film with high mechanical strength as separator for Li-air batteries
    K. Kamimoto, F. Bai, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, H. Izumi, H. Minami, N. Imanishi
    Journal of Solid State Electrochemistry, 26 (3) 1349-1357 (2022).
  7. Synthesis and Proton Conductivity of the Mixed Cation Phosphate, KCo1-xH2x(PO3)3yH2O with a One-dimensional Tunnel Structure
    J. Nakajima, N. Ueda, S. Taminato, D. Mori, N. Imanishi, S. Higashimoto, Y. Matsuda
    Journal of the Japan Society of Powder and Powder Metallurgy, 69 6603 (2022).
  8. A Rechargeable Aqueous Lithium-Air Battery with an Acetic Acid Catholyte Operated at High Pressure
    S. Ichida, D. Mori, S. Taminato, T. Zhang, Y. Takeda, O. Yamamoto, N. Imanishi
    Journal of Energy and Power Technology, 4 (3) doi:10.21926/jept.2201009 (2022).

2021

  1. A Review of Li+/H+ Exchange in Garnet Solid Electrolytes: From Instablity against Humidity to Sustainable Processing in Water
    RJ. Ye, M. Ihrig, N. Imanishi, M. Finsterbusch, E. Figgemeier
    ChemSusChem, 14 4397-4407 (2021).
  2. High proton conductivity in NaMg1-xLixHx(PO3)3yH2O with a three-dimensional open framework in the intermediate temperature range
    N. Ueda, J. Nakajima, D. Mori, S. Taminato, N. Imanishi, S. Higashimoto, Y. Matsuda
    Materials Advances, 2 6603 (2021).
  3. Aqueous Lithium--Air Batteries with High Power Density at Room Temperature under Air Atmosphere
    H. Minami, H. Izumi, T. Hasegawa, F. Bai, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, N. Imanishi
    Journal of Energy and Power Technology, 3 (3) doi:10.21926/jept.2103041 (2021).
  4. Partial Disproportionation Gallium-Oxygen Reaction Boosts Lithium-Oxygen Batteries
    Z. Sun, X. Zhao, W. Qiu, C. Yang, O. Yamamoto, N. Imanishi, J. Liu, T. Zhang
    Energy Storage Materials, 41, 475-484 (2021).
  5. Dispersion hydrophobic electrolyte enables lithium-oxygen battery enduring saturated water vapor
    Y. Zhang, F. Jiang, H. Jiang, O. Yamamoto, T. Zhang
    Journal of Energy Chemistry, 64, 511-519 (2022).
  6. K2NiF4 type Ln2-xSrxNiO4+delta (Ln = La and Pr; x = 0-0.14) as an oxygen electrocatalyst for aqueous lithium-oxygen rechargeable batteries
    T. Mizoguchi, H. Sonoki, E. Niwa, S. Taminato, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi
    Solid State Ionics, 369, 115708 (2021).
  7. Lithium Metal Anode for High-Power and High-Capacity Rechargeable Batteries
    N. Imanishi, T. Zhang, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto
    Journal of Energy and Power Technology, 3 (2) doi:10.21926/jept.2102019 (2021).
  8. Bifunctional 1‐Boc-3-Iodoazetidine Enhancing Lithium Anode Stability and Rechargeability of Lithium−Oxygen Batteries
    Y.N. Li, F.L. Jiang, Z. Sun, O. Yamamoto, N. Imanishi, T. Zhang
    ACS Applied Materials & Interfaces, 13, 16437 (2021).
  9. Proton conductivity in mixed cation phosphate, KMg1-xH2x(PO4)3yH2O with a layered structure at low-intermediate temperatures
    Y. Matsuda, N. Ueda, K. Funakoshi, J. Nakashima, D. Mori, S. Taminato, S. Higashimoto
    Dalton Transactions, 50, 7678-7685 (2021).
  10. Investigation of the Difference in Charge/Discharge Resistance for Cathode Materials after Cycle Test Combined with STEM-EELS and XAFS Analysis
    Y. Shimonishi, D. Mori, Y. Maeda, S. Taminato, N. Imanishi, S. Yoshida
    Journal of The Electrochemical Society, 168, 040533 (2021).
  11. High Energy Density Rechargeable Aqueous Lithium Batteries with an Aqueous Hydroquinone Sulfonic Acid and Benzoquinone Sulfonic Acid Redox Couple Cathode
    H. Takagi, K. Kakimoto, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, N. Imanishi
    Journal of Energy and Power Technology, 3 (1) doi:10.21926/jept.2101010 (2021).
  12. Reactions of Li2MnO3 Cathode in an All-Solid-State Thin-film Battery during Cycling
    K. Hikima, Y. Hinuma, K. Shimizu, K. Suzuki, S. Taminato, M. Hirayama, T. Masuda, K. Tamura, R. Kanno
    ACS Applied Materials & Interfaces, 13 7650-7663 (2021).
  13. Influence of Chemical Composition and Domain Morphology of Li2MnO3 on Battery Properties
    K. Hikima, S. Taminato, Y. Hinuma, K. Shimizu, K. Suzuki, M. Hirayama, S. Yasuno, K. Tamura, R. Kanno
    Batteries & Supercaps, 4 493-503 (2021).

2020

  1. Water-Stable High Lithium-Ion Conducting Solid Electrolyte of Li1.4Al0.4Ge0.2Ti1.4(PO4)3–LiCl for Aqueous Lithium-Air Batteries
    F. Bai, K. Kakimoto, X.F. Shang, D. Mori, S. Taminato, M. Matsumoto, Y. Takeda, O. Yamamoto, H. Izumi, H. Minami, N. Imanishi
    frontiers in Energy Research, 8, 187(1-9) (2020).
  2. Lithium metal deposition/dissolution under uniaxial pressure with high-rigidity layered polyethylene separator
    S. Kanamori, M. Matsumoto, S. Taminato, D. Mori, Y. Takeda, H.J. Hah, T. Takeuchi, N. Imanishi
    RSC Advances, 10, 17805-17815 (2020).
  3. Ambient Air Operation Rechargeable Lithium-Air Battery with Acetic Acid Catholyte
    S. Soga, F. Bai, T. Zhang, K. Kakimoto, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, N. Imanishi
    Journal of The Electrochemical Society, 167, 090522 (2020).
  4. A porous framework infiltrating Li–O2 battery: a low-resistance and high-safety system
    Y.P. Zhang, Y.Q. Li, Z.H. Cui, J.C. Wang, O. Yamamoto, N. Imanishi, T. Zhang
    Sustainable Energy Fuels, 4, 1600-1606 (2020).
  5. Synthesis of NASICON-type Li1.4Al0.4Ge0.2Ti1.4(PO4)3 solid electrolyte by rheological phase method
    F. Bai, K. Kakimoto, X.F. Shang, D. Mori, S. Taminato, M. Matsumoto, Y. Takeda, O. Yamamoto, H. Minami, H. Izumi, N. Imanishi
    Journal of Asian Ceramic Societies, 8, (2020).
  6. Discovery of New‐Structured Post‐Spinel MgFe2O4: Crystal Structure and High‐Pressure Phase Relations
    T. Ishii, N. Miyajima, R. Sinmyo, H. Kojitani, D. Mori, Y. Inaguma, M. Akaogi
    Geophysical Research Letters, 47, e2020GL087490 (2020).
  7. Arrangement of water molecules and high proton coductivity of tunnel strcture phosphates, KMg1-xH2x(PO4)3yH2O
    Y. Matsuda, K. Funakoshi, R. Sebe, G. Kobayashi, M. Yonemura, N. Imanishi, D. Mori, S. Higashimoto
    RSC Advances, 10, 7803-7811 (2020).
  8. Electrical and mechanical properties of water stable NASICON-type Li1+xAlxGe0.2Ti1.8-x(PO4)3
    F. Bai, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, H. Nemori, M. Nomura, N. Imanishi
    Solid State Ionics, 345, 115151 (2020).

2019

  1. Oxygen Concentration Measurement in the Porous Cathode of a Lithium–Air Battery using a Fine Optical Fiber Sensor
    S. Fujimoto, S. Uemura, N. Imanishi, S. Hirai
    Mechanical Engineering Letter, 5, 19-00095 (2019).
  2. Perspective and challenges of rechargeable lithium-air batteries
    N. Imanishi, O. Yamamoto
    Materials Today Advances, 4, 100031 (2019).
  3. Effect of Anion Species in Early Stage of SEI Formation Process
    H. Sonoki, M. Matsui, N. Imanishi
    Journal of The Electrochemical Society, 166, A3593-A3598 (2019).
  4. Relation between the structure and tolerance factor for perovskite-type oxyfluorides
    T. Katsumata, Y. Inaguma, D. Mori, A. Aimi, Y. Yoneda
    Ceramics, 54, 629-632 (2019). (In Japanese)
  5. Synthesis of new perovskite-type oxyfluorides, BaInO2F and comparison of the structure among perovskite-type oxyfluorides
    T. Katsumata, R. Suzuki, N. Satoh, S. Suzuki, M. Nakashima, Y. Inaguma, D. Mori, A. Aimi, Y. Yoneda
    Journal of Solid State Chemistry, 279, 120919 (2019).
  6. A hydrated strontium cobalt oxyhydroxide Ruddlesden–Popper phase as an oxygen electrocatalyst for aqueous lithium–oxygen rechargeable batteries
    H. Sonoki, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, N. Imanishi
    Chemical Communications, 55, 7454-7457 (2019).
  7. High lithium-ion conducting solid electrolyte thin film of Li1.4Al0.4Ge0.2Ti1.4(PO4)3-TiO2 for aqueous lithium secondary batteries
    F. Bai, X. Shang, D. Mori, S. Taminato, M. Matsumoto, S. Watanabe, Y. Takeda, O. Yamamoto, H. Nemori, M. Nomura, N. Imanishi
    Solid State Ionics, 338, 127-133 (2019).
  8. Lithium-stable NASICON-type lithium-ion conducting solid electrolyte film coated with a polymer electrolyte
    Y. Koizumi, D. Mori, S. Taminato, O. Yamamoto, Y. Takeda, N. Imanishi
    Solid State Ionics, 337, 101-106 (2019).
  9. Aqueous Lithium Rechargeable Battery with a Tin(II) Chloride Aqueous Cathode and a Water-Stable Lithium-Ion Conducting Solid Electrolyte
    S. Watanabe, D. Mori, S. Taminato, Y. Matsuda, O. Yamamoto, Y. Takeda, N. Imanishi
    Journal of The Electrochemical Society, 166, A539-A545 (2019).
  10. Solid Electrolyte Interphase Film on Lithium Metal Anode in Mixed-Salt System
    S. Eijima, H. Sonoki, M. Matsumoto, S. Taminato, D. Mori, N. Imanishi
    Journal of The Electrochemical Society, 166, A5421-A5429 (2019).
  11. Destabilized Passivation Layer on Magnesium-Based Intermetallics as Potential Anode Active Materials for Magnesium Ion Batteries
    M. Matsui, H. Kuwata, D. Mori, N. Imanishi, M. Mizuhata
    frontiers in Chemistry, 7, 7 (2019).
  12. Synthesis, structure and ionic conductivity of garnet like lithium ion conductor Li6.25+xGa0.25La3-xSrxZr3O12
    D. Mori, K. Sugimoto, Y. Matsuda, K. Ohmori, T. Katsumata, S. Taminato, Y. Takeda, O. Yamamoto, N. Imanishi
    Journal of The Electrochemical Society, 166, A5168-A5173 (2019).
  13. Cross-linked polymer electrolyte and its application to lithium polymer battery
    T. Sakakibara, M. Kitamura, T. Honma, H. Kohno, T. Uno, M. Kubo, N. Imanishi, Y. Takeda, T. Itoh
    Electrochimica Acta, 296, 1018-1026 (2019).
  14. Lithium-ion conduction of Li1.4Al0.4Ti1.6(PO4)3-GeO2 composite solid electrolyte
    F. Bai, X. Shang,H. Nemori, M. Nomura, D. Mori, M. Matsumoto, N. Kyono, Y. Takeda, O. Yamamoto, N. Imanishi
    Solid State Ionics, 329, 40-45 (2019).

2018

  1. Synthesis and Structures of Novel Solid-State Electrolytes
    R. Kanno, G. Kobayashi, K. Suzuki, M. Hirayama, D. Mori, K. Tamura
    in "Nanoinformatics", Chap. 13, pp. 279-298, Ed. I. Tanaka, Springer Singapore (2018).
  2. Garnet-type Lithium-ion Conductor - As a Solid Electrolyte for Oxide All Solid State batteries
    Y. Takeda, Y. Matsuda, D. Mori, N. Imanishi
    in "Soild State Batteries: Fundamentals and Frontiers", Chap. 4, pp. 42-56, Ed. R. Kanno , CMC Research (2018).
  3. Facile synthesis of mesoporous NiCo2O4 nanoneedle arrays on three dimensional graphene thin film grown on Ni foam for a high-performance binder-free lithium-ion battery anode
    X. Wang, P. Zhang, T. Wang, O. Yamamoto, N. Imanishi, M. Wang
    Journal of Electroanalytical Chemistry, 823, 545-552 (2018).
  4. Lithium-ion conducting solid electrolytes of Li1.4Al0.4Ge0.2Ti1.4(PO4)3 and MOx (M = Al, Ti, and Zr) composites
    N. Kyono, F. Bai, H. Nemori, H. Minami, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi
    Solid State Ionics, 324, 114-127 (2018).
  5. Biogenous iron oxide (L-BIOX) as a high capacity anode material for lithium ion batteries
    H. Furusawa, R. Konishi, D. Mori, H. Horino, T. Horiba, Y. Takeda, J. Takada, O. Yamamoto, N. Imanishi
    Electrochimica Acta, 281, 227-236 (2018).
  6. Improved cycling performance of intermetallic anode by minimized SEI layer formation
    H. Kuwata, M. Matsui, H. Sonoki, Y. Manabe, N. Imanishi, M. Mizuhata
    Journal of The Electrochemical Society, 165, A1486-A1491 (2018).
  7. High-energy-density rechargeable lithium-nickel chloride aqueous solution batteries
    Y. Morita, S. Watanabe, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi
    ACS Omega, 3, 5558-5562 (2018).
  8. A novel hybrid positive electrode with liquid-solid redox couples having high-capacity for lithium battery
    P. Zhang, X. Yang, T. Wang, N. Imanishi, O. Yamamoto, M. Wang
    Journal of Power Sources, 390, 54-60 (2018).
  9. Effect of Alumina Sources on the Fluorescence Properteis of Long Persistent Phosphor, SrAl2O4: Eu3+, Dy3+
    M. Kuboyama, H. Furusawa, D. Mori, Y. Takeda, O. Yamamoto, K. Asahino, K. Kamiya, N. Imanishi
    Journal of the Japan Society of Powder and Powder Metallurgy, 65, 176-182 (2018).
  10. Phase transitions and dielectric properties of perovskite-type oxyfluorides (1-x)KNbO3-xKMgF3
    T. Katsumata, N. Sawada, R. Kuraya, T. Hamagaki, A. Aimi, D. Mori, Y. Inaguma, R.P. Wang
    Journal of Fluorine Chemistry, 209, 65-72 (2018).
  11. Aqueos lithium-air batteries with a lithium-ion conducting solid electrolyte Li1.3Al0.5Nb0.2Ti1.3(PO4)3
    H. Nemori, X. Shang, H. Minami, S. Mitsuoka, M. Nomura, H. Sonoki, Y. Morita, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi
    Solid State Ionics, 317, 136-141 (2018).
  12. Lithium dendrite suppression and cycling efficiency of lithium anode
    P. Zhang, J. Zhu, M. Wang, N. Imanishi, O. Yamamoto
    Electrochemistry Communications, 87, 27-30 (2018).
  13. Synthesis of New LiNbO3-type Oxynitrides, Mn(Mn1/6Ta5/6)O2.5N0.5 under High Pressure and at High Temperature
    T. Katsumata, C. Ohba, A. Tobe, A. Takeda, M. Shoji, A. Aimi, D. Mori, Y. Inaguma
    Chemistry Letters, 47, 37-39 (2018).

2017

  1. Low temperature synthesis, structure and magnetic properties of Mn2[VO4]F
    D. Mori, H. Ben Yahia, M. Shikano, N. Imanishi, Y. Inaguma, I. Belharouak
    Journal of Asian Ceramic Societies, 5, 460-465 (2017).
  2. Passivation Layer Formation of Magnesium Metal Negative Electrodes for Rechargeable Magnesium Batteries
    H. Kuwata, M. Matsui, N. Imanishi
    Journal of The Electrochemical Society, 164, A3229-A3236 (2017).
  3. Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries
    Q. Si, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi
    Energies, 10, 1803 (2017).
  4. Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6.25M0.25La3Zr2O12 (M: Al3+ and Ga3+)
    Y. Matuda, A. Sakaida, K. Sugimoto, D. Mori, Y. Takeda, O. Yamamoto, N. Imanishi
    Solid State Ionics, 311, 69-74 (2017).
  5. Solid state ionics: a Japan perspective
    O. Yamamoto
    Science and Technology of Advanced Materials, 18, 504-527 (2017).
  6. High Specific Energy Density Aqueous lithium-Metal Choloride Rechargeable Batteries
    Y. Morita, S. Watanabe, P. Zhnag, H. Wang, D. Mori, Y. Matsuda, O. Yamamoto, Y. Takeda, N. Imanishi
    Journal of The Electrochemical Society, 164, A1958-A1964 (2017).
  7. A reversible dendrite-free high-areal-capacity lithium metal electrodes
    H. Wang, M. Matsui, H. Kuwata, H. Sonoki, Y. Matsuda, X.F. Shang, Y. Takeda, O. Yamamoto, N. Imanishi
    Nature communications, 8, 15106 (2017).

2016

  1. Surface layer and morphology of lithium metal electrodes
    Kuwata, H., Sonoki, H., Matsui, M., Matsuda, Y. & Imanishi, N.
    Electrochemistry, 84, 854-860 (2016).
  2. High lithium-ion conducting NASICON-type Li1+x-yAlxNbyTi2-x-y(PO4)3 solid electrolytes
    Shang, X.F., Nemori, H., Mitsuoka, S., Matsuda, Y., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Solid State Ionics, 297, 43-48 (2016).
  3. Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries
    Hashimoto, H., Ukita, M., Sakuma, R., Nakanishi, M., Fujii, T., Imanishi, N. & Takada, J.
    Journal of Power Sources, 323, 503-509 (2016).
  4. Phase relaion, structure and ionic conductivity of Li7-x-3yAlyLa3Zr2-xTaxO12
    Matsuda, Y., Itami, Y., Hayamizu, K., Ishigaki, T., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    RSC Advances, 6, 78210-78218 (2016).
  5. Lithium-stable high lithium ion conducting Li1.4Al0.4Ge0.2Ti1.4(PO4)3 solid electrolyte
    Tang, M.X., Wang, H., Lee, Y.-G., Takeda, Y., Yamamoto, O., Xu, J.Q., Yuan, A.B. & Imanishi, N.
    Journal of the Electrochemical Society, 163, A1822-A1828 (2016).
  6. High lithium-ion conducting NASICON-type Li1+xAlxGeyTi2-x-y(PO4)3 solid electrolytes
    Shang, X.F., Nemori, H., Mitsuoka, S., Xu, P., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Frontiers in Energy Research, 4, 12 (2016).
  7. Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes
    Takeda, Y., Yamamoto, O. & Imanishi, N.
    Electrochemistry, 84, 210-218 (2016).
  8. Electrochemical and mechanical properties of polyolefin hard segment with polyethylene oxide conductive phase block copolymers
    Tang, M.X., Wang, H., Lee, Y.-G., Takeda, Y., Yamamoto, O., Xu, J.Q., Yuan, A.B. & Imanishi, N.
    Solid State Ionics, 289, 188-193 (2016).
  9. Electrochemical performance of an all-solid-state lithium-oxygen battery under humidified oxygen
    Suzuki, Y., Watanabe, K., Sakuma, S. & Imanishi, N.
    Solid State Ionics, 289, 72-76 (2016).
  10. Lithium-air batteries Fundamental and application
    Imanishi, N. & Yamamoto, O.
    in "Metal-air and metal sulfur batteries", Chap. 2, P21-64, Ed. V. Neburchilov &J, Zhang, CRC Press (2016).

2015

  1. Stability of garnet-type solid electrolyte LixLa3A2-yByO12 (A = Nb or Ta, B = Sc or Zr)
    Nemori, H., Matsuda, Y., Mitsuoka, S., Matsui, M., Yamamoto, O., Takeda, Y. & Imanishi, N.
    Solid State Ionics, 282, 7-12 (2015).
  2. In-operando FTIR Spectroscopy for Composite Electrodes of Lithium-ion Batteries
    Matsui, M., Deguchi, S., Kuwata, H. & Imanishi, N.
    Electrochemistry, 83, 874-878 (2015).
  3. Low Temperature Synthesis of High Crystalline Spinel Oxides:LiNi1/2Mn3/2O4
    Matsuda, Y., Matsui, M., Sanda, T., Takashi, Y. & Imanishi, N.
    Electrochemistry, 83, 870-873 (2015).
  4. In-situ Three-dimensional Visualization of Precipitation Behavior in a Porous Air Electrode for Aqueous Lithium-air Battery
    Uemura, S., Furuyama, T., Masuda, T., Tsushima, S., Imanishi, N. & Hirai, S.
    Electrochemistry, 83, 831-833 (2015).
  5. Crystal structure and electrical properties of magnesia co-doped scandia stabilized zirconia
    Sonoyama, N., Martin, S.G., Amador, U., Imanishi, N., Ikeda, M., Erfu, N., Tanimura, H., Hirano, A., Takeda, Y. & Yamamoto, O.
    Journal of the Electrochemical Society, 162, F1-F5 (2015).
  6. Silicon anode for rechargeable aqueous lithium-air batteries
    Teranishi, R., Si, Q., Mizukoshi, F., Kawakubo, M., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of Power Sources, 273, 538-543 (2015).
  7. Characteristics of discharge products in all-solid-state Li-air batteries
    Suzuki, Y., Kami, K., Watanabe, K. & Imanishi, N.
    Solid State Ionics, 278, 222-227 (2015).
  8. Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12
    Suzuki, Y., Kami, K., Watanabe, K., Watanabe, A., Saito, N., Ohnishi., T, Takada, K., Sudo, R. & Imanishi, N.
    Solid State Ionics, 278, 172-176 (2015).
  9. A solvate ionic liquid as the anolyte for aqueous rechargeable Li-O2 batteries
    Wang, H., Sunahiro, S., Matsui, M., Zhang, P., Takeda, Y., Yamamoto, O. & Imanishi, N.
    ChemElectroChem, 2, 1144-1151 (2015).
  10. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method
    Hayamizu, K., Matsuda, Y., Matsui, M. & Imanishi, N.
    Solid State Nuclear Magnetic Resonance, 70, 21-27 (2015).
  11. Phase formation of a garnet-type lithium-ion conductor Li7-3xAlxLa3Zr2O12
    Matsuda, Y., Sakamoto, K., Matsui, M., Yamamoto, O., Takeda, Y. & Imanishi, N.
    Solid State Ionics, 277, 23-29 (2015).
  12. Tape-cast water-stable NASICON-type high lithium ion conducting solid electrolyte films for aqueous lithium-air batteries
    Zhang, P., Wang, H., Lee, Y.G., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of the Electrochemical Society, 162, A1265-A1271 (2015).
  13. High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3
    Zhang, P., Wang, H., Si, Q., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Solid State Ionics, 272, 101-106 (2015).
  14. A novel aqueous lithium-oxygen cell based on the oxygen-peroxide redox couple
    Matsui, M., Wada, A., Matsuda, Y., Yamamoto, O., Takeda, Y. & Imanishi, N.
    Chemical Communications, 51, 3189-3192 (2015).
  15. Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution
    Matsui, M., Mizukoshi, F. & Imanishi, N.
    Journal of Power Sources, 280, 205-209 (2015).
  16. Aqueous lithium-air Batteries
    Yamamoto, O. & Imanishi, N.
    in "Rechargeable batteries", Chap. 20, P559-586, Ed. Z. Zhang & S.S.Zhang, Springer (2015).

2014

  1. Relationship between lithium content and ionic conductivity in the Li5+2xLa3Nb2-xScxO12 system
    Nemori, H., Matsuda, Y., Matsui, M., Yamamoto, O., Takeda, Y. & Imanishi, N.
    Solid State Ionics, 266, 9-12 (2014).
  2. Water-stable lithium ion conducting solid electrolyte of iron and aluminum doped NASICON-type LiTi2(PO4)3
    Zhang, P., Matsui, M., Takeda, Y., Yamamoto, B. & Imanishi, N.
    Solid State Ionics, 263, 27-32 (2014).
  3. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution
    Sunahiro, S., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of Power Sources, 262, 338-343 (2014).
  4. Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12
    Matsui, M., Sakamoto, K., Takahashi, K., Hirano, A., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Solid State Ionics, 262, 155-159 (2014).
  5. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal
    Sudo, R., Nakata, Y., Ishiguro, K., Matsui, M., Hirano, A., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Solid State Ionics, 262, 151-154 (2014).
  6. Silicon-carbon composite dispersed in a carbon paper substrate for solid polymer lithium-ion batteries
    Si, Q., Kawakubo, M., Matsui, M., Horiba, T., Yamamoto, O., Takeda, Y., Seki, N. & Imanishi, N.
    Journal of Power Sources, 248, 1275-1280 (2014).
  7. Stability of carbon electrodes for aqueous lithium-air secondary batteries
    Ohkuma, H., Uechi, I., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of Power Sources, 245, 947-952 (2014).
  8. Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting
    Zhang, M., Huang, Z., Cheng, J., Yamamoto, O., Imanishi, N., Chi, B., Pu, J. & Li, J.
    Journal of Alloys and Compounds, 590, 147-152 (2014).
  9. Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12
    Matsui, M., Takahashi, K., Sakamoto, K., Hirano, A., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Dalton Transactions, 43, 1019-1024 (2014).
  10. Materials challenges in rechargeable lithium-air batteries
    Kwabi, D. G., Ortiz-Vitoriano, N., Freunberger, S. A., Chen, Y., Imanishi, N., Bruce, P. G. & Shao-Horn, Y.
    MRS Bulletin, 39, 443-452 (2014).
  11. Lithium ion conducting solid electrolytes for aqueous lithium-air batteries
    Imanishi, N., Matsui, M., Takeda, Y. & Yamamoto, O.
    Electrochemistry, 82, 938-945 (2014).
  12. Study of degradation processes of carbon negative electrodes for all-solid lithium polymer batteries
    Kawakubo, M., Matsui, M., Ishikawa, S., Hirano, A., Yamamoto, O., Takeda, Y. & Imanishi, N.
    Electrochemistry, 82, 642-646 (2014).
  13. Ta-Doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries
    Ishiguro, K., Nemori, H., Sunahiro, S., Nakata, Y., Sudo, R., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of the Electrochemical Society, 161, A668-A674 (2014).
  14. Rechargeable lithium-air batteries: characteristics and prospects
    Imanishi, N. & Yamamoto, O.
    Materials Today, 17, 24-30 (2014).
  15. Introduction
    Yamamoto, O.
    in “The lithium air battery: Fundamentals”, Chap. 1, P1-22, Ed. Imanishi, N., Luntz, A.C. & Bruce, P., Spinger (2014).
  16. Lithium air batteries
    Zhang, T. & Imanishi, N.
    in “Nanoscale technology for advanced lithium batteries”, Chap. 15, P227-242, Ed. Osaka, T. & Ogumi, Z., Springer (2014).

2013

  1. Water-stable lithium ion conducting solid electrolyte of the Li1.4Al0.4Ti1.6-xGex(PO4)3 system (x=0-1.0) with NASICON-type structure
    Zhang, P., Matsui, M., Hirano, A., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Solid State Ionics, 253, 175-180 (2013).
  2. Low temperature cubic garnet-type CO2-doped Li7La3Zr2O12
    Toda, S., Ishiguro, K., Shimonishi, Y., Hirano, A., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Solid State Ionics, 233, 102-106 (2013).
  3. Carbon paper substrate for silicon-carbon composite anodes in lithium-ion batteries
    Si, Q., Matsui, M., Horiba, T., Yamamoto, O., Takeda, Y., Seki, N. & Imanishi, N.
    Journal of Power Sources, 241, 744-750 (2013).
  4. Development of a 4.2 V aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes
    Shimizu, W., Makino, S., Takahashi, K., Imanishi, N. & Sugimoto, W.
    Journal of Power Sources, 241, 572-577 (2013).
  5. Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 sheet prepared by tape casting method for lithium-air batteries
    Zhang, M., Takahashi, K., Uechi, I., Takeda, Y., Yamamoto, O., Im, D., Lee, D.-J., Chi, B., Pu, J., Li, J. & Imanishi, N.
    Journal of Power Sources, 235, 117-121 (2013).
  6. High capacity carbon anode for dry polymer lithium-ion batteries
    Kawakubo, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of Power Sources, 225, 187-191 (2013).
  7. Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries
    Ohkuma, H., Uechi, I., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O.
    Journal of Power Sources, 223, 319-324 (2013).
  8. Stability of Nb-Doped Cubic Li7La3Zr2O12 with lithium metal
    Ishiguro, K., Nakata, Y., Matsui, M., Uechi, I., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of the Electrochemical Society, 160, A1690-A1693 (2013).
  9. A composite polymer electrolyte protect layer between lithium and water stable ceramics for aqueous lithium-air batteries
    Wang, H., Im, D., Lee, D. J., Matsui, M., Takeda, Y., Yamamoto, O. & Imanishi, N.
    Journal of the Electrochemical Society, 160, A728-A733 (2013).
  10. Polymer electrolyte for lithium-air batteries
    Imanishi, N. & Yamamoto, O.
    in “Lithium batteries”, Chap. 10, P217-232, Ed. Scrodati, B., Abraham, K.M., vana Schalkwijk, W. & Hassoun, J., Wiley (2013).

2012

  1. Preparation and Electrochemical Properties of Li1+xAlxGe2-x(PO4)3 Synthesized by a Sol-Gel Method
    Zhang, M., Takahashi, K., Imanishi, N., Takeda, Y., Yamamoto, O., Chi, B., Pu, J. & Li, J.
    Journal of the Electrochemical Society, 159, A1114-A1119 (2012).
  2. A water stable high lithium ion conducting Li1.4Ti1.6Al0.4(PO4)3-epoxy resin hybrid sheet
    Takahashi, K., Johnson, P., Imanishi, N., Sammes, N., Takeda, Y. & Yamamoto, O.
    Journal of the Electrochemical Society, 159, A1065-A1069 (2012).
  3. Electrochemical properties of the polyethylene oxide-Li(CF3SO2)2N and ionic liquid composite electrolyte
    Wang, H., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O.
    Journal of Power Sources, 219, 22-28 (2012).
  4. A super high lithium ion conducting solid electrolyte of grain boundary modified Li1.4Ti1.6 Al0.4(PO4)3
    Takahashi, K., Ohmura, J., Im, D., Lee, D. J., Zhang, T., Imanishi, N., Hirano, A., Phillipps, M. B., Takeda, Y. & Yamamoto, O.
    Journal of the Electrochemical Society, 159, A342-A348 (2012).
  5. 4 V class aqueous hybrid electrochemical capacitor with battery-like capacity
    Makino, S., Shinohara, Y., Ban, T., Shimizu, W., Takahashi, K., Imanishi, N. & Sugimoto, W.
    Rsc Advances, 2, 12144-12147 (2012).
  6. Ultrasonication fabrication of high quality multilayer graphene flakes and their characterization as anodes for lithium ion batteries
    Kokai, F., Sorin, R., Chigusa, H., Hanai, K., Koshio, A., Ishihara, M., Koga, Y., Hasegawa, M., Imanishi, N. & Takeda, Y.
    Diamond and Related Materials, 29, 63-68 (2012).
  7. Carbon anodes for solid polymer electrolyte lithium-ion batteries
    Ito, Y., Kawakubo, M., Ueno, M., Okuma, H., Si, Q., Kobayashi, T., Hanai, K., Imanishi, N., Hirano, A., Phillipps, M.B., Takeda, Y. & Yamamoto, O.
    Journal of Power Sources, 214, 84-90 (2012).
  8. Aqueous Lithium-Air Rechargeable Batteries
    Imanishi, N., Takeda, Y. & Yamamoto, O.
    Electrochemistry, 80, 706-715 (2012).

2011

  1. Aqueous lithium/air rechargeable batteries
    Zhang, T., Imanishi, N., Takeda, Y. & Yamamoto, O.
    Chemistry Letters, 40, 668-673 (2011).
  2. Stability of Li/polymer electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte
    Zhang, T., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O.
    Electrochemical and Solid State Letters, 14, A45-A48 (2011).
  3. Determination of Li-ion diffusion coefficient in amorphous Zn and ZnO thin films prepared by radio frequency magnetron sputtering
    Xie, J., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O., Zhao, X.B. & Cao, G.S.
    Thin Solid Films, 519, 3373-3377 (2011).
  4. Electrochemical kinetics of nanosized Ag and Ag2O thin films prepared by radio frequency magnetron sputtering
    Xie, J., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O., Zhao, X.-B. & Cao, G.-S.
    Journal of Solid State Electrochemistry, 15, 2031-2039 (2011).
  5. Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries
    Si, Q., Hanai, K., Ichikawa, T., Phillipps, M.B., Hirano, A., Imanishi, N., Yamamoto, O. & Takeda, Y.
    Journal of Power Sources, 196, 9774-9779 (2011).
  6. Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li
    Liu, S., Wang, H., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O. & Yang, J.
    Journal of Power Sources, 196, 7681-7686 (2011).
  7. High performance Si/C@CNF composite anode for solid-polymer lithium-ion batteries
    Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Yamamoto, O. & Takeda, Y.
    Journal of Power Sources, 196, 6982-6986 (2011).
  8. Interfacial resistance of the LiFePO4-C/PEO-LiTFSI composite electrode for dry-polymer lithium-ion batteries
    Hanai, K., Ueno, M., Imanishi, N., Hirano, A., Yamamoto, O. & Takeda, Y.
    Journal of Power Sources, 196, 6756-6761 (2011).
  9. A study on lithium/air secondary batteries-stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions
    Shimonishi, Y., Zhang, T., Imanishi, N., Im, D., Lee, D.J., Hirano, A., Takeda, Y., Yamamoto, O. & Sammes, N.
    Journal of Power Sources, 196, 5128-5132 (2011).
  10. Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries
    Ueno, M., Imanishi, N., Hanai, K., Kobayashi, T., Hirano, A., Yamamoto, O. & Takeda, Y.
    Journal of Power Sources, 196, 4756-4761 (2011).
  11. Low-temperature synthesis of the Li2S-P2S5 electrolytes by a milling process combined with heat treatment
    Nakashima, S., Kondo, S., Ooura, Y., Machida, N., Hirano, A., Imanishi, N. & Takeda, Y.
    Electrochemistry, 79, 701-705 (2011).
  12. Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor
    Johnson, P., Sammes, N., Imanishi, N., Takeda, Y. & Yamamoto, O.
    Solid State Ionics, 192, 326-329 (2011).
  13. Synthesis of garnet-type Li7-xLa3Zr2O12-1/2x and its stability in aqueous solutions
    Shimonishi, Y., Toda, A., Zhang, T., Hirano, A., Imanishi, N., Yamamoto, O. & Takeda, Y.
    Solid State Ionics, 183, 48-53 (2011).

2010

  1. Water-stable lithium electrode and its application in aqueous lithium/air secondary batteries
    Zhang, T., Liu, S., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O.
    Electrochemistry, 78, 360-362 (2010).
  2. A novel high energy density rechargeable lithium/air battery
    Zhang, T., Imanishi, N., Shimonishi, Y., Hirano, A., Takeda, Y., Yamamoto, O. & Sammes, N.
    Chemical Communications, 46, 1661-1663 (2010).
  3. Electrochemical performance of all-solid-state Li batteries based LiMn0.5Ni0.5O2 cathode and NASICON-type electrolyte
    Xie, J., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., Zhao, X.B. & Cao, G.S.
    Journal of Power Sources, 195, 8341-8346 (2010).
  4. Amorphous LiCoO2 thin films on Li1+x+yAlxTi2-xSiyP3-yO12 prepared by radio frequency magnetron sputtering for all-solid-state Li-ion batteries
    Xie, J., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., Cao, G.S. & Zhao, X.B.
    Electrochimica Acta, 55, 5440-5445 (2010).
  5. Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes
    Xie, J., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y. & Yamamoto, O.
    Materials Chemistry and Physics, 120, 421-425 (2010).
  6. Li-ion diffusion behavior in Sn, SnO and SnO2 thin films studied by galvanostatic intermittent titration technique
    Xie, J., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O., Zhao, X.B. & Cao, G.S.
    Solid State Ionics, 181, 1611-1615 (2010).
  7. Crystal structure and oxygen ion conductivity of Ga3+ co-doped scandia-stabilized zirconia
    Ota, Y., Ikeda, M., Sakuragi, S., Iwama, Y., Sonoyama, N., Ikeda, S., Hirano, A., Imanishi, N., Takeda, Y. & Yamamoto, O.
    Journal of the Electrochemical Society, 157, B1707-B1712 (2010).
  8. Lithium dendrite formation in Li/poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells
    Liu, S., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O. & Yang, J.
    Journal of the Electrochemical Society, 157, A1092-A1098 (2010).
  9. Stability of a water-stable lithium metal anode for a lithium-air battery with acetic acid-water solutions
    Zhang, T., Imanishi, N., Shimonishi, Y., Hirano, A., Xie, J., Takeda, Y., Yamamoto, O. & Sammes, N.
    Journal of the Electrochemical Society, 157, A214-A218 (2010).
  10. Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li
    Liu, S., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O. & Yang, J.
    Journal of Power Sources, 195, 6847-6853 (2010).
  11. A study on lithium/air secondary batteries-stability of NASICON-type glass ceramics in acid solutions
    Shimonishi, Y., Zhang, T., Johnson, P., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O. & Sammes, N.
    Journal of Power Sources, 195, 6187-6191 (2010).
  12. Carbon anode for dry-polymer electrolyte lithium batteries
    Saito, D., Ito, Y., Hanai, K., Kobayashi, T., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O.
    Journal of Power Sources, 195, 6172-6176 (2010).
  13. An amorphous LiCo1/3Mn1/3Ni1/3O2 thin film deposited on NASICON-type electrolyte for all-solid-state Li-ion batteries
    Xie, J., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y. & Yamamoto, O.
    Journal of Power Sources, 195, 5780-5783 (2010).
  14. Interfacial properties between LiFePO4 and poly(ethylene oxide)-Li(CF3SO2)2N polymer electrolyte
    Hanai, K., Kusagawa, K., Ueno, M., Kobayashi, T., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O.
    Journal of Power Sources, 195, 2956-2960 (2010).
  15. A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries
    Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Takeda, Y. & Yamamoto, O.
    Journal of Power Sources, 195, 1720-1725 (2010).